出典: フリー百科事典『ウィキペディア(Wikipedia)』
初等幾何学における垂心(すいしん、英: orthocenter)は、三角形の3つの頂点から対辺に引いた三本の垂線の交点。
3つの頂点を A,B,C、垂心を H、3本の垂線の足を Ha,Hb,Hc とする。
- 重心・外心と同一直線上にある。この線をオイラー線という。
- 直角三角形の垂心は、直角となる頂点である。鈍角三角形の垂心は、その三角形の外部にある。
- 垂心は三角形HaHbHcの内心か傍心となる。
- 垂心と外心の中点は九点円の中心である。
- 三角形ABHの垂心は、Cである。
-
- a,b,c は3辺の長さ。α・β・γは3つの角。R は外接円の半径である。
- P を外接円上の点とし、M を PH の中点とする。
- 各頂点ABCを通る対辺に対する平行線を3本とも引き、新たな三角形A'B'C'を作る(右図参照)。このとき、三角形ABCの垂心と三角形A'B'C'の外心は一致する。
座標平面において、3頂点の座標を(xa,ya), (xb,yb), (xc,yc)とすると、垂心の座標は以下のようになる。
3頂点が単位円周上にある場合、以下のように簡単に書くことができる。
重心座標による垂心の座標は tanα:tanβ:tanγ となる。