コンテンツにスキップ

Undergraduate Texts in Mathematics

出典: フリー百科事典『ウィキペディア(Wikipedia)』

Undergraduate Texts in Mathematics (UTM) とは、シュプリンガーにより出版されている数学の学部レベル (undergraduate) の教科書のシリーズである[1]。「概して北アメリカの大学において数学を学ぶ学部3、4年生に向けて」[1]書かれており、いくつかの書籍については訳書も出版されている。

抜粋

[編集]

素朴集合論

[編集]

題名における「素朴」(naive) は、数理論理学を用いた厳密な公理化が行われる以前のものという意味合いであり、その意味でカントールらによる初期の集合論としての素朴集合論とは異なる[2]

原著は1960年にD. Van Nostrandから出版されており、以降シュプリンガー (1974年) を含めて何度か再版されている。日本語版は富川滋の訳で1975年に出版されている[3]

グレブナ基底と代数多様体入門

[編集]

原題は「Ideals, Varieties, and Algorithms」(イデアル多様体アルゴリズム) [4][5][6]である。「平易な英語とわかりやすい語り口で書かれたすぐれた教科書」[7]「とても読み易く書かれており, 学び始めてすぐにグレブナー基底や代数幾何学の面白さを味わえる素晴らしい教科書」[8]と評価されている。

一覧

[編集]
  1. Halmos, Paul R. (1974). Finite-Dimensional Vector Spaces. ISBN 978-0-387-90093-3 
  2. Halmos, Paul Richard (1974). Lectures on Boolean algebras. ISBN 978-0-387-90094-0 
  3. Halmos, Paul R. (1974). Naive Set Theory. ISBN 978-0-387-90092-6 
  4. Martin, George E. (1975). The Foundations of Geometry and the Non-Euclidean Plane. ISBN 978-1-4612-5727-1 
  5. Kemeny, John G.; Snell, J. Laurie (1976). Finite Markov Chains: With a New Appendix: "Generalization of a Fundamental Matrix". ISBN 978-0-387-90192-3 
  6. Singer, I. M.; Thorpe, J. A. (1976). Lecture Notes on Elementary Topology and Geometry. ISBN 978-0-387-90202-9 
  7. Apostol, Tom M. (1976). Introduction to Analytic Number Theory. ISBN 978-0-387-90163-3 
  8. Sigler, L. E. (1976). Algebra. ISBN 978-0-387-90195-4 
  9. Fleming, Wendell (1977). Functions of Several Variables. ISBN 978-0-387-90206-7 
  10. Croom, F.H. (1978). Basic Concepts of Algebraic Topology. ISBN 978-0-387-90288-3 
  11. LeCuyer, Edward J. (1978). Introduction to College Mathematics with A Programming Language. ISBN 978-0-387-90280-7 
  12. Duda, E.; Whyburn, G. (1979). Dynamic Topology. ISBN 978-0-387-90358-3 
  13. Jantosciak, J.; Prenowitz, W. (1979). Join Geometries: A Theory of Convex Sets and Linear Geometry. ISBN 978-0-387-90340-8 
  14. Malitz, Jerome (1979). Introduction to Mathematical Logic: Set Theory - Computable Functions - Model Theory. ISBN 978-0-387-90346-0 
  15. Wilson, R. L. (1979). Much Ado About Calculus: A Modern Treatment with Applications Prepared for Use with the Computer. ISBN 978-0-387-90347-7 
  16. Thorpe, John A. (1979). Elementary Topics in Differential Geometry. doi:10.1007/978-1-4612-6153-7. ISBN 978-0-387-90357-6 
  17. Franklin, Joel (1980). Methods of Mathematical Economics: Linear and Nonlinear Programming. Fixed-Point Theorems. ISBN 978-0-387-90481-8 
  18. Macki, Jack; Strauss, Aaron (1981). Introduction to Optimal Control Theory. ISBN 978-0-387-90624-9 
  19. Foulds, L. R. (1981). Optimization Techniques: An Introduction. ISBN 978-0-387-90586-0 
  20. Fischer, E. (1982). Intermediate Real Analysis. ISBN 978-0-387-90721-5 
  21. Martin, George E. (1982). Transformation Geometry: An Introduction to Symmetry. ISBN 978-0-387-90636-2 
  22. Martin, George E. (1983). The Foundations of Geometry and the Non-Euclidean Plane. ISBN 978-0-387-90694-2 
  23. Owen, David R. (1983). A First Course in the Mathematical Foundations of Thermodynamics. ISBN 978-0-387-90897-7 
  24. Smith, K. T. (1983). Primer of Modern Analysis: Directions for Knowing All Dark Things, Rhind Papyrus, 1800 B.C.. ISBN 978-0-387-90797-0 
  25. Armstrong, M. A. (1983). Basic Topology. doi:10.1007/978-1-4757-1793-8. ISBN 978-0-387-90839-7 
  26. Dixmier, Jacques (1984). General Topology. ISBN 0-387-90972-9 
  27. Morrey, Charles B. Jr.; Protter, Murray H. (1984). Intermediate Calculus. ISBN 978-0-387-96058-6 
  28. Curtis, Charles W. (1984). Linear Algebra: An Introductory Approach. ISBN 978-0-387-90992-9 
  29. Driver, R.D. (1984). Why Math?. ISBN 978-0-387-90973-8 
  30. Foulds, L. R. (1984). Combinatorial Optimization for Undergraduates. ISBN 978-0-387-90977-6 
  31. Jänich, Klaus (1984). Topology. ISBN 978-0-387-90892-2 
  32. Bühler, W. K.; Cornell, G.; Opolka, H.; Scharlau, W. (1985). From Fermat to Minkowski: Lectures on the Theory of Numbers and Its Historical Development. ISBN 978-0-387-90942-4 
  33. Marsden, Jerrold; Weinstein, Alan (1985). Calculus I. ISBN 978-0-387-90974-5 
  34. Marsden, Jerrold; Weinstein, Alan (1985). Calculus II. ISBN 978-0-387-90975-2 
  35. Marsden, Jerrold; Weinstein, Alan (1985). Calculus III. ISBN 978-0-387-90985-1 
  36. Lang, Serge (1986). Introduction to Linear Algebra (2nd ed.). ISBN 978-0-387-96205-4 
  37. Stanton, Dennis; White, Dennis (1986). Constructive Combinatorics. ISBN 978-0-387-96347-1 
  38. Klambauer, Gabriel (1986). Aspects of Calculus. ISBN 978-0-387-96274-0 
  39. Lang, Serge (1986). A First Course in Calculus (5th ed.). doi:10.1007/978-1-4419-8532-3. ISBN 978-0-387-96201-6 
  40. James, I. M. (1987). Topological and Uniform Spaces. ISBN 978-0-387-96466-9 
  41. Lang, Serge (1987). Calculus of Several Variables. ISBN 978-0-387-96405-8 
  42. Lang, Serge (1987). Linear Algebra (3rd ed.). ISBN 978-0-387-96412-6 
  43. Peressini, Anthony L.; Sullivan, Francis E.; Uhl, J.J. Jr. (1988). The Mathematics of Nonlinear Programming. ISBN 978-0-387-96614-4 
  44. Samuel, Pierre (1988). Projective Geometry. ISBN 978-0-387-96752-3 
  45. Armstrong, Mark A. (1988). Groups and Symmetry. doi:10.1007/978-1-4757-4034-9. ISBN 978-0-387-96675-5 
  46. Brémaud, Pierre (1988). An Introduction to Probabilistic Modeling. doi:10.1007/978-1-4612-1046-7. ISBN 978-0-387-96460-7 
  47. Bressoud, David M. (1989). Factorization and Primality Testing. doi:10.1007/978-1-4612-4544-5. ISBN 978-0-387-97040-0 
  48. Brickman, Louis (1989). Mathematical Introduction to Linear Programming and Game Theory. doi:10.1007/978-1-4612-4540-7. ISBN 978-0-387-96931-2 
  49. Strayer, James K. (1989). Linear Programming and Its Applications. doi:10.1007/978-1-4612-1009-2. ISBN 978-0-387-96930-5 
  50. Flanigan, Francis J.; Kazdan, Jerry L. (1990). Calculus Two: Linear and Nonlinear Functions (2nd ed.). ISBN 978-0-387-97388-3 
  51. Iooss, Gerard; Joseph, Daniel D. (1990). Elementary Stability and Bifurcation Theory (2nd ed.). doi:10.1007/978-1-4612-0997-3. ISBN 978-0-387-97068-4 
  52. Hoffmann, Karl-Heinz; Hämmerlin, Günther (1991). Numerical Mathematics. doi:10.1007/978-1-4612-4442-4. ISBN 978-0-387-97494-1 
  53. Morrey, Charles B. Jr.; Protter, Murray H. (1991). A First Course in Real Analysis (2nd ed.). doi:10.1007/978-1-4419-8744-0. ISBN 978-0-387-97437-8 
  54. Bressoud, David M. (1991). Second Year Calculus: From Celestial Mechanics to Special Relativity. doi:10.1007/978-1-4612-0959-1. ISBN 978-0-387-97606-8 
  55. Millman, Richard S.; Parker, George D. (1991). Geometry: A Metric Approach with Models (2nd ed.). ISBN 978-0-387-97412-5 
  56. Palka, Bruce P. (1991). An Introduction to Complex Function Theory. ISBN 978-0-387-97427-9 
  57. Banchoff, Thomas; Wermer, John (1992). Linear Algebra Through Geometry (2nd ed.). doi:10.1007/978-1-4612-4390-8. ISBN 978-0-387-97586-3 
  58. Devlin, Keith (1993). The Joy of Sets: Fundamentals of Contemporary Set Theory (2nd ed.). doi:10.1007/978-1-4612-0903-4. ISBN 978-0-387-94094-6 
  59. Kinsey, L. Christine (1993). Topology of Surfaces. doi:10.1007/978-1-4612-0899-0. ISBN 978-0-387-94102-8 
  60. Valenza, Robert J. (1993). Linear Algebra: An Introduction to Abstract Mathematics. doi:10.1007/978-1-4612-0901-0. ISBN 978-0-387-94099-1 
  61. Ebbinghaus, H. -D.; Flum, J.; Thomas, W. (1994). Mathematical Logic (2nd ed.). doi:10.1007/978-1-4757-2355-7. ISBN 978-0-387-94258-2 
  62. Berberian, Sterling K. (1994). A First Course in Real Analysis. doi:10.1007/978-1-4419-8548-4. ISBN 978-0-387-94217-9 
  63. Jänich, Klaus (1994). Linear Algebra. doi:10.1007/978-1-4612-4298-7. ISBN 978-0-387-94128-8 
  64. Pedrick, George (1994). A First Course in Analysis. doi:10.1007/978-1-4419-8554-5. ISBN 978-0-387-94108-0 
  65. Stillwell, John (1994). Elements of Algebra: Geometry, Numbers, Equations. doi:10.1007/978-1-4757-3976-3. ISBN 978-0-387-94290-2 
  66. Anglin, W.S. (1994). Mathematics: A Concise History and Philosophy. doi:10.1007/978-1-4612-0875-4. ISBN 978-0-387-94280-3 
  67. Simmonds, James G. (1994). A Brief on Tensor Analysis (2nd ed.). doi:10.1007/978-1-4419-8522-4. ISBN 978-0-387-94088-5 
  68. Anglin, W.S.; Lambek, J. (1995). The Heritage of Thales. ISBN 978-0-387-94544-6 
  69. Isaac, Richard (1995). The Pleasures of Probability. ISBN 978-0-387-94415-9 
  70. Exner, George R. (1996). An Accompaniment to Higher Mathematics. doi:10.1007/978-1-4612-3998-7. ISBN 978-0-387-94617-7 
  71. Troutman, John L. (1996). Variational Calculus and Optimal Control: Optimization with Elementary Convexity (2nd ed.). doi:10.1007/978-1-4612-0737-5. ISBN 978-0-387-94511-8 
  72. Browder, Andrew (1996). Mathematical Analysis: An Introduction. doi:10.1007/978-1-4612-0715-3. ISBN 978-0-387-94614-6 
  73. Buskes, Gerard; Rooij, Arnoud Van (1997). Topological Spaces: From Distance to Neighborhood. doi:10.1007/978-1-4612-0665-1. ISBN 978-0-387-94994-9 
  74. Fine, Benjamin; Rosenberger, Gerhard (1997). The Fundamental Theorem of Algebra. doi:10.1007/978-1-4612-1928-6. ISBN 978-0-387-94657-3 
  75. Beardon, Alan F. (1997). Limits: A New Approach to Real Analysis. doi:10.1007/978-1-4612-0697-2. ISBN 978-0-387-98274-8 
  76. Gordon, Hugh (1997). Discrete Probability. doi:10.1007/978-1-4612-1966-8. ISBN 978-0-387-98227-4 
  77. Roman, Steven (1997). Introduction to Coding and Information Theory. ISBN 978-0-387-94704-4 
  78. Sethuraman, Bharath (1997). Rings, Fields, and Vector Spaces: An Introduction to Abstract Algebra via Geometric Constructibility. doi:10.1007/978-1-4757-2700-5. ISBN 978-0-387-94848-5 
  79. Lang, Serge (1997). Undergraduate Analysis (2nd ed.). doi:10.1007/978-1-4757-2698-5. ISBN 978-0-387-94841-6 
  80. Hilton, Peter; Holton, Derek; Pedersen, Jean (1997). Mathematical Reflections: In a Room with Many Mirrors. doi:10.1007/978-1-4612-1932-3. ISBN 978-0-387-94770-9 
  81. Martin, George E. (1998). Geometric Constructions. doi:10.1007/978-1-4612-0629-3. ISBN 978-0-387-98276-2 
  82. Protter, Murray H. (1998). Basic Elements of Real Analysis. doi:10.1007/b98884. ISBN 978-0-387-98479-7 
  83. Priestley, W. M. (1998). Calculus: A Liberal Art (2nd ed.). doi:10.1007/978-1-4612-1658-2. ISBN 978-0-387-98379-0 
  84. Singer, David A. (1998). Geometry: Plane and Fancy. doi:10.1007/978-1-4612-0607-1. ISBN 978-0-387-98306-6 
  85. Smith, Larry (1998). Linear Algebra (3rd ed.). doi:10.1007/978-1-4612-1670-4. ISBN 978-0-387-98455-1 
  86. Lidl, Rudolf; Pilz, Günter (1998). Applied Abstract Algebra (2nd ed.). doi:10.1007/978-1-4757-2941-2. ISBN 978-0-387-98290-8 
  87. Stillwell, John (1998). Numbers and Geometry. doi:10.1007/978-1-4612-0687-3. ISBN 978-0-387-98289-2 
  88. Laubenbacher, Reinhard; Pengelley, David (1999). Mathematical Expeditions: Chronicles by the Explorers. ISBN 978-0-387-98434-6 
  89. Frazier, Michael W. (1999). An Introduction to Wavelets Through Linear Algebra. ISBN 978-0-387-98639-5 
  90. Schiff, Joel L. (1999). The Laplace Transform: Theory and Applications. ISBN 978-0-387-98698-2 
  91. Brunt, B. van; Carter, M. (2000). The Lebesgue-Stieltjes Integral: A Practical Introduction. doi:10.1007/978-1-4612-1174-7. ISBN 978-0-387-95012-9 
  92. Exner, George R. (2000). Inside Calculus. doi:10.1007/b97700. ISBN 978-0-387-98932-7 
  93. Hartshorne, Robin (2000). Geometry: Euclid and Beyond. doi:10.1007/978-0-387-22676-7. ISBN 978-0-387-98650-0 
  94. Callahan, James J. (2000). The Geometry of Spacetime: An Introduction to Special and General Relativity. doi:10.1007/978-1-4757-6736-0. ISBN 978-0-387-98641-8 
  95. Cederberg, Judith N. (2001). A Course in Modern Geometries (2nd ed.). doi:10.1007/978-1-4757-3490-4. ISBN 978-0-387-98972-3 
  96. Gamelin, Theodore W. (2001). Complex Analysis. doi:10.1007/978-0-387-21607-2. ISBN 978-0-387-95093-8 
  97. Jänich, Klaus (2001). Vector Analysis. doi:10.1007/978-1-4757-3478-2. ISBN 978-0-387-98649-4 
  98. Martin, George E. (2001). Counting: The Art of Enumerative Combinatorics. doi:10.1007/978-1-4757-4878-9. ISBN 978-0-387-95225-3 
  99. Hilton, Peter; Holton, Derek; Pedersen, Jean (2002). Mathematical Vistas: From a Room with Many Windows. doi:10.1007/978-1-4757-3681-6. ISBN 978-0-387-95064-8 
  100. Saxe, Karen (2002). Beginning Functional Analysis. doi:10.1007/978-1-4757-3687-8. ISBN 978-0-387-95224-6 
  101. Lang, Serge (2002). Short Calculus: The Original Edition of “A First Course in Calculus”. doi:10.1007/978-1-4613-0077-9. ISBN 978-0-387-95327-4 
  102. Estep, Donald (2002). Practical Analysis in One Variable. doi:10.1007/b97698. ISBN 978-0-387-95484-4 
  103. Toth, Gabor (2002). Glimpses of Algebra and Geometry (2nd ed.). doi:10.1007/b98964. ISBN 978-0-387-95345-8 
  104. Aitsahlia, Farid; Chung, Kai Lai (2003). Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance (4th ed.). doi:10.1007/978-0-387-21548-8. ISBN 978-0-387-95578-0 
  105. Erdös, Paul; Suranyi, Janos (2003). Topics in the Theory of Numbers. doi:10.1007/978-1-4613-0015-1. ISBN 978-0-387-95320-5 
  106. Lovász, L.; Pelikán, J.; Vesztergombi, K. (2003). Discrete Mathematics: Elementary and Beyond. doi:10.1007/b97469. ISBN 978-0-387-95584-1 
  107. Stillwell, John (2003). Elements of Number Theory. doi:10.1007/978-0-387-21735-2. ISBN 978-0-387-95587-2 
  108. Buchmann, Johannes (2004). Introduction to Cryptography (2nd ed.). doi:10.1007/978-1-4419-9003-7. ISBN 978-0-387-21156-5 
  109. Irving, Ronald S. (2004). Integers, Polynomials, and Rings: A Course in Algebra. doi:10.1007/b97633. ISBN 978-0-387-40397-7 
  110. Ross, Clay C. (2004). Differential Equations: An Introduction with Mathematica (2nd ed.). doi:10.1007/978-1-4757-3949-7. ISBN 978-0-387-21284-5 
  111. Cull, Paul; Flahive, Mary; Robson, Robby (2005). Difference Equations: From Rabbits to Chaos. doi:10.1007/0-387-27645-9. ISBN 978-0-387-23233-1 
  112. Chambert-Loir, Antoine (2005). A Field Guide to Algebra. doi:10.1007/b138364. ISBN 978-0-387-21428-3 
  113. Elaydi, Saber (2005). An Introduction to Difference Equations (3rd ed.). doi:10.1007/0-387-27602-5. ISBN 978-0-387-23059-7 
  114. Lang, Serge (2005). Undergraduate Algebra (3rd ed.). doi:10.1007/0-387-27475-8. ISBN 978-0-387-22025-3 
  115. Singer, Stephanie Frank (2005). Linearity, Symmetry, and Prediction in the Hydrogen Atom. doi:10.1007/b136359. ISBN 978-0-387-24637-6 
  116. Stillwell, John (2005). The Four Pillars of Geometry. doi:10.1007/0-387-29052-4. ISBN 978-0-387-25530-9 
  117. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2006). A Course in Calculus and Real Analysis. doi:10.1007/0-387-36425-0. ISBN 978-0-387-30530-1 
  118. Bix, Robert (2006). Conics and Cubics: A Concrete Introduction to Algebraic Curves (2nd ed.). doi:10.1007/0-387-39273-4. ISBN 978-0-387-31802-8 
  119. Moschovakis, Yiannis (2006). Notes on Set Theory (2nd ed.). doi:10.1007/0-387-31609-4. ISBN 978-0387287225 
  120. Knoebel, Art; Laubenbacher, Reinhard; Lodder, Jerry; Pengelley, David (2007). Mathematical Masterpieces: Further Chronicles by the Explorers. doi:10.1007/978-0-387-33062-4. ISBN 978-0-387-33060-0 
  121. Harris, John M.; Hirst, Jeffry L.; Mossinghoff, Michael (2008). Combinatorics and Graph Theory (2nd ed.). doi:10.1007/978-0-387-79711-3. ISBN 978-0-387-79710-6 
  122. Stillwell, John (2008). Naive Lie Theory. doi:10.1007/978-0-387-78214-0. ISBN 978-0-387-78214-0 
  123. Hairer, Ernst; Wanner, Gerhard (2008) [1996]. Analysis by its History. doi:10.1007/978-0-387-77036-9. ISBN 978-0-387-94551-4 
  124. Edgar, Gerald (2008). Measure, Topology, and Fractal Geometry (2nd ed.). doi:10.1007/978-0-387-74749-1. ISBN 978-0-387-74748-4 
  125. Herod, James; Shonkwiler, Ronald W. (2009). Mathematical Biology: An Introduction with Maple and Matlab (2nd ed.). doi:10.1007/978-0-387-70984-0. ISBN 978-0-387-70983-3 
  126. Mendivil, Frank; Shonkwiler, Ronald W. (2009). Explorations in Monte Carlo Methods. doi:10.1007/978-0-387-87837-9. ISBN 978-0-387-87836-2 
  127. Stein, William (2009). Elementary Number Theory: Primes, Congruences, and Secrets: A Computational Approach. doi:10.1007/b13279. ISBN 978-0-387-85524-0 
  128. Childs, Lindsay N. (2009). A Concrete Introduction to Higher Algebra (3rd ed.). doi:10.1007/978-0-387-74725-5. ISBN 978-0-387-74527-5 
  129. Halmos, Paul R.; Givant, Steven (2009). Introduction to Boolean Algebras. doi:10.1007/978-0-387-68436-9. ISBN 978-0-387-40293-2 
  130. Bak, Joseph; Newman, Donald J. (2010). Complex Analysis (3rd ed.). doi:10.1007/978-1-4419-7288-0. ISBN 978-1-4419-7287-3 
  131. Beck, Matthias; Geoghegan, Ross (2010). The Art of Proof: Basic Training for Deeper Mathematics. doi:10.1007/978-1-4419-7023-7. ISBN 978-1-4419-7022-0 
  132. Callahan, James J. (2010). Advanced Calculus: A Geometric View. ISBN 978-1-4419-7331-3 
  133. Hurlbert, Glenn (2010). Linear Optimization: The Simplex Workbook. ISBN 978-0-387-79147-0 
  134. Stillwell, John (2010). Mathematics and Its History (3rd ed.). doi:10.1007/978-1-4419-6053-5. ISBN 978-1-441-96052-8 
  135. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2010). A Course in Multivariable Calculus and Analysis. doi:10.1007/978-1-4419-1621-1. ISBN 978-1-4419-1620-4 
  136. Davidson, Kenneth R.; Donsig, Allan P. (2010). Real Analysis and Applications: Theory in Practice. doi:10.1007/978-0-387-98098-0. ISBN 978-0-387-98097-3 
  137. Daepp, Ulrich; Pamela, Gorkin (2011). Reading, Writing, and Proving: A Closer Look at Mathematics (2nd ed.). doi:10.1007/978-1-4419-9479-0. ISBN 978-1-4419-9478-3 
  138. Bloch, Ethan D. (2011). Proofs and Fundamentals: A First Course in Abstract Mathematics (2nd ed.). doi:10.1007/978-1-4419-7127-2. ISBN 978-1-4419-7126-5 
  139. Adkins, William A.; Davidson, Mark G. (2012). Ordinary Differential Equations. ISBN 978-1-461-43617-1 
  140. Ostermann, Alexander; Wanner, Gerhard (2012). Geometry by Its History. ISBN 978-3-642-29163-0 
  141. Petersen, Peter (2012). Linear Algebra. ISBN 978-1-4614-3612-6 
  142. Roman, Steven (2012). Introduction to the Mathematics of Finance: Arbitrage and Option Pricing. ISBN 978-1-4614-3582-2 
  143. Gerstein, Larry J. (2012). Introduction to Mathematical Structures and Proofs (2nd ed.). doi:10.1007/978-1-4614-4265-3. ISBN 978-1-4614-4264-6 
  144. Vanderbei, Robert J.; Çinlar, Erhan (2013). Real and Convex Analysis. ISBN 978-1-4614-5256-0 
  145. Bajnok, Bela (2013). An Invitation to Abstract Mathematics. ISBN 978-1-461-46635-2 
  146. McInerney, Andrew (2013). First Steps in Differential Geometry. ISBN 978-1-4614-7731-0 
  147. Ross, Kenneth A. (2013). Elementary Analysis: The Theory of Calculus. ISBN 978-1-4614-6270-5 
  148. Stillwell, John (2013). The Real Numbers: An Introduction to Set Theory and Analysis. doi:10.1007/978-3-319-01577-4. ISBN 978-3-319-01576-7 
  149. Conway, John B. (2014). A Course in Point Set Topology. ISBN 978-3-319-02367-0 
  150. Olver, Peter J. (2014). Introduction to Partial Differential Equations. ISBN 978-3-319-02098-3 
  151. Mercer, Peter R. (2014). More Calculus of a Single Variable. doi:10.1007/978-1-4939-1926-0. ISBN 978-1-4939-1925-3 
  152. Hoffstein, Jeffrey; Pipher, Jill; Silverman, Joseph H. (2014). An Introduction to Mathematical Cryptography (2nd ed.). doi:10.1007/978-1-4939-1711-2. ISBN 978-1-4939-1710-5 
  153. Rosenthal, Daniel; Rosenthal, David; Rosenthal, Peter (2014). A Readable Introduction to Real Mathematics. doi:10.1007/978-3-319-05654-8. ISBN 978-3-319-05653-1 
  154. Terrell, Maria Shea; Lax, Peter D. (2014). Calculus with Applications (2nd ed.). doi:10.1007/978-1-4614-7946-8. ISBN 978-1-4614-7945-1 
  155. Axler, Sheldon (2015). Linear Algebra Done Right (3rd ed.). doi:10.1007/978-3-319-11080-6. ISBN 978-3-319-11079-0 
  156. Beck, Matthias; Robins, Sinai (2015). Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra (2nd ed.). doi:10.1007/978-1-4939-2969-6. ISBN 978-1-4939-2968-9 
  157. Laczkovich, Miklós; Sós, Vera T. (2015). Real Analysis: Foundations and Functions of One Variable. doi:10.1007/978-1-4939-2766-1. ISBN 978-1-4939-2765-4 
  158. Pugh, Charles C. (2015). Real Mathematical Analysis (2nd ed.). doi:10.1007/978-3-319-17771-7. ISBN 978-3-319-17770-0 
  159. Logan, David J. (2015). A First Course in Differential Equations (3rd ed.). doi:10.1007/978-3-319-17852-3. ISBN 978-3-319-17851-6 
  160. Silverman, Joseph H.; Tate, John (2015). Rational Points on Elliptic Curves (2nd ed.). doi:10.1007/978-3-319-18588-0. ISBN 978-3-319-18587-3 
  161. Little, Charles; Kee, Teo; van Brunt, Bruce (2015). Real Analysis via Sequences and Series. doi:10.1007/978-1-4939-2651-0. ISBN 978-1-4939-2650-3 
  162. Abbott, Stephen (2015). Understanding Analysis (2nd ed.). doi:10.1007/978-1-4939-2712-8. ISBN 978-1-4939-2711-1 
  163. Cox, David; Little, John; O'Shea, Danal (2015). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (4th ed.). doi:10.1007/978-3-319-16721-3. ISBN 978-3-319-16720-6 
  164. Logan, David J. (2015). Applied Partial Differential Equations (3rd ed.). doi:10.1007/978-3-319-12493-3. ISBN 978-3-319-12492-6 
  165. Tapp, Kristopher (2016). Differential Geometry of Curves and Surfaces. doi:10.1007/978-3-319-39799-3. ISBN 978-3-319-39798-6 
  166. Hijab, Omar (2016). Introduction to Calculus and Classical Analysis (4th ed.). doi:10.1007/978-3-319-28400-2. ISBN 978-3-319-28399-9 
  167. Shurman, Jerry (2016). Calculus and Analysis in Euclidean Space. doi:10.1007/978-3-319-49314-5. ISBN 978-3-319-49312-1 
  168. Laczkovich, Miklós; Sós, Vera T. (2017). Real Analysis: Series, Functions of Several Variables, and Applications. doi:10.1007/978-1-4939-7369-9. ISBN 978-1-4939-7367-5 
  169. Lax, Peter D.; Terrell, Maria Shea (2017). Multivariable Calculus with Applications. doi:10.1007/978-3-319-74073-7. ISBN 978-3-319-74072-0 
  170. Shores, Thomas S. (2018). Applied Linear Algebra and Matrix Analysis (2nd ed.). doi:10.1007/978-3-319-74748-4. ISBN 978-3-319-74747-7 
  171. Olver, Peter J.; Shakiban, Chehrzad (2018). Applied Linear Algebra (2nd ed.). doi:10.1007/978-3-319-91041-3. ISBN 978-3-319-91040-6 
  172. Stanley, Richard P. (2018). Algebraic Combinatorics: Walks, Trees, Tableaux, and More (2nd ed.). doi:10.1007/978-3-319-77173-1. ISBN 978-3-319-77172-4 
  173. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2018). A Course in Calculus and Real Analysis (2nd ed.). doi:10.1007/978-3-030-01400-1. ISBN 978-3-030-01399-8 
  174. Asmar, Nakhle H.; Grafakos, Loukas (2018). Complex Analysis with Applications. doi:10.1007/978-3-319-94063-2. ISBN 978-3-319-94062-5 
  175. Rosenthal, Daniel; Rosenthal, David; Rosenthal, Peter (2018). A Readable Introduction to Real Mathematics (2nd ed.). doi:10.1007/978-3-030-00632-7. ISBN 978-3-030-00631-0 
  176. Takloo-Bighash, Ramin (2018). A Pythagorean Introduction to Number Theory. doi:10.1007/978-3-030-02604-2. ISBN 978-3-030-02603-5 
  177. Petersen, T. Kyle (2019). Inquiry-Based Enumerative Combinatorics: One, Two, Skip a Few... Ninety-Nine, One Hundred. doi:10.1007/978-3-030-18308-0. ISBN 978-3-030-18307-3 
  178. Saari, Donald G. (2019). Mathematics of Finance: An Intuitive Introduction. doi:10.1007/978-3-030-25443-8. ISBN 978-3-030-25442-1 
  179. Jongsma, Calvin (2019). Introduction to Discrete Mathematics via Logic and Proof. doi:10.1007/978-3-030-25358-5. ISBN 978-3-030-25357-8 
  180. Lee, Nam-Hoon (2020). Geometry: from Isometries to Special Relativity. doi:10.1007/978-3-030-42101-4. ISBN 978-3-030-42100-7 
  181. Bajnok, Bela (2020). An Invitation to Abstract Mathematics. doi:10.1007/978-3-030-56174-1. ISBN 978-3-030-56173-4 
  182. Stillwell, John (2020). Mathematics and Its History, (A Concise Edition). doi:10.1007/978-3-030-55193-3. ISBN 978-3-030-55192-6 
  183. Toth, Gabor (2021). Elements of Mathematics. doi:10.1007/978-3-030-75051-0.. ISBN 978-3-030-75051-0 

脚注

[編集]

注釈

[編集]

出典

[編集]
  1. ^ a b Undergraduate Texts in Mathematics”. www.springer.com. www.springer.com. 2020年11月7日閲覧。
  2. ^ 渕野 昌「Is "naive set theory" really that naïve?」『数理解析研究所講究録』第1787巻、2012年、183–189頁、CRID 1050282810743931904hdl:2433/172772 
  3. ^ Halmos, Paul R. 著、富川滋 訳『素朴集合論』ミネルヴァ書房、1975年(原著1960年)。ASIN B000JA2VEONDLJP:12608404https://ndlsearch.ndl.go.jp/books/R100000002-I000001121261 
  4. ^ Cox, David A.; Little, John; O'Shea, Donal (1997). Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer Science+Business Media. doi:10.1007/978-3-319-16721-3. ISBN 978-3-319-16720-6 
  5. ^ Cox, David A.、Little, John B.、O'Shea, Donal『グレブナ基底と代数多様体入門 上』落合啓之・示野真一・西山享・室政和・山本敦子 (訳)、シュプリンガー・フェアラーク東京、2000年(原著1997年)。ISBN 9784431708230 
  6. ^ Cox, David A.、Little, John B.、O'Shea, Donal『グレブナ基底と代数多様体入門 下』落合啓之・示野真一・西山享・室政和・山本敦子 (訳)、シュプリンガー・フェアラーク東京、2000年(原著1997年)。ISBN 9784431708247 
  7. ^ 高山 信毅「書評」『数学』第54巻第1号、2002年、105頁、doi:10.11429/sugaku1947.54.105ISSN 0039-470X 
  8. ^ 楫 元. “セミナーテキスト紹介”. 早稲田大学. 2022年9月29日閲覧。

関連項目

[編集]

外部リンク

[編集]