コンテンツにスキップ

電荷キャリア密度

出典: フリー百科事典『ウィキペディア(Wikipedia)』

電荷キャリア密度またはキャリア濃度とは、体積あたりの電荷キャリアの個数である。国際単位系での単位は m−3 となる。他の密度と同じように、位置に依存する。

キャリア密度は、電荷が持つことができるエネルギー範囲で電荷密度を積分することで得られる。

電荷キャリア密度は粒子密度であり、体積 で積分するとその体積中の電荷キャリアの個数 となる。

ここで

は位置に依存する電荷キャリア密度。

密度が位置に依存せず定数に等しい場合、この式は次のように簡単にできる。

電荷キャリア密度は、電気伝導熱伝導などの現象に関する方程式を含む。

半導体

[編集]

キャリア密度は半導体で重要であり、ドーピング過程で重要な量である。バンド理論を用いると、電子密度 は伝導帯での体積当たりの電子の個数である。正孔では は価電子帯での体積当たりの正孔の個数である。電子についてこの数を計算するために、伝導帯の電子の全密度 は、バンドの底 からバンドのトップ までのバンドでの異なるエネルギーにわたって伝導電子密度を合計であるという考えから出発する。

電子はフェルミ粒子であるため、いかなるエネルギーでの伝導電子の密度 は、可能な伝導状態の数である状態密度 と実際に電子を持っている状態の割合フェルミ分布 との積である。

計算を簡単にするため、フェルミ分布に従うフェルミ粒子としての電子を扱う代わりに、ボルツマン分布で与えられる古典的な相互作用の無い気体としてそれらを扱う。この近似ではの時に効果を無視でき、それは室温近くの半導体では正しい。この近似は極低温やバンドギャップが非常に小さい場合は正しくない。

3次元の状態密度は、

これらの結果、次が得られる。

正孔についても同様な表現が導出される。キャリア濃度は、化学からの可逆反応の平衡のように、バンドギャップにわたって行ったり来たりする電子を扱うことで計算でき、質量作用の法則を導く。質量作用の法則はドープされていない材料での真性キャリア濃度と呼ばれる量 を定義する。

以下の表は真性半導体における真性キャリア濃度の値をいくつか載せている。キャリア濃度はドーピングされると変化する。

材料 キャリア密度 (1/cm³) @300 K
シリコン[1] 9.65×109
ゲルマニウム[2] 2.33×1013
ガリウムヒ素[3] 2.1×106

金属

[編集]

キャリア密度は金属にも適用でき、単純なドルーデモデルから計算できる。この場合、キャリア密度(この文脈では自由電子密度とも呼ばれる)は次のように計算できる[4]

ここでアボガドロ定数、Zは価電子の数、は物質の密度、原子質量である。

測定

[編集]

電荷キャリアの密度は多くの場合ホール効果を用いて決定でき[5]、電圧は密度の逆数に比例する。

参考文献

[編集]
  1. ^ Pietro P. Altermatt, Andreas Schenk, Frank Geelhaar,Gernot Heiser (2003). “Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing”. Journal of Applied Physics 93: 1598. doi:10.1063/1.1529297. 
  2. ^ O. Madelung, U. Rössler, M. Schulz. Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties. p. 1-3. doi:10.1007/10832182_503. https://link.springer.com/chapter/10.1007%2F10832182_503 
  3. ^ Gallium arsenide (GaAs), intrinsic carrier concentration, electrical and thermal conductivity. doi:10.1007/10832182_196. https://link.springer.com/chapter/10.1007%2F10832182_196 
  4. ^ Ashcroft, Mermin. Solid State Physics. p. 4 
  5. ^ Edwin Hall (1879). “On a New Action of the Magnet on Electric Currents”. American Journal of Mathematics 2 (3): 287–92. doi:10.2307/2369245. JSTOR 2369245. オリジナルの2011-07-27時点におけるアーカイブ。. https://web.archive.org/web/20110727010116/http://www.stenomuseet.dk/skoletj/elmag/kilde9.html 2008年2月28日閲覧。.