コンテンツにスキップ

植田大樹

出典: フリー百科事典『ウィキペディア(Wikipedia)』
うえだ だいじゅ

植田 大樹
生誕 1989年1月20日
日本の旗 日本 大阪府
出身校 三重大学医学部医学科
職業 大阪公立大学准教授
テンプレートを表示

植田 大樹(うえだ だいじゅ、大阪)は、大阪公立大学大学院医学研究科で放射線診断学を専攻する医師であり、人工知能学の准教授を務める。[1][2]

2016年から2021年まで大阪市立大学大学院医学研究科放射線診断学・IVR学に医員として勤務。[3]同学にて2017年から2021年にかけて博士課程を終了。[3]在学中の2018年にはマンモグラフィからの乳がんの画像診断AI開発や、[4][5]MRAからの脳動脈瘤の検出AIの開発を行った。[6][7][8]その後、2021年から大阪市立大学健康科学イノベーションセンター特任准教授に着任。2023年に胸部レントゲン写真から心機能や弁膜症を診断するAIを開発した。[9][10][11][12][13][14][15]2024年4月から大阪公立大学大学院医学研究科人工知能学准教授と大阪公立大学健康科学イノベーションセンター副所長を務める。[3]

略歴

[編集]
  • 2024年4月 - 現在 大阪公立大学大学院医学研究科人工知能学 准教授
  • 2024年4月 - 現在 大阪公立大学健康科学イノベーションセンター 副所長
  • 2022年4月 - 2024年3月 大阪公立大学健康科学イノベーションセンター 特任准教授
  • 2021年4月 - 2022年3月 大阪市立大学健康科学イノベーションセンター 特任准教授
  • 2016年4月 - 2021年3月 大阪市立大学大学院医学研究科 放射線診断学・IVR学 医員

研究分野

[編集]
  • 放射線科学
  • 画像診断
  • 人工知能
  • コンピューター支援診断

主な受賞

[編集]
  • 医用画像人工知能研究奨励賞, 日本医学放射線学会, 2023年[16]
  • 南部陽一郎記念若手奨励賞, 大阪公立大学 , 2022年[17]
  • 優秀論文賞, 日本IVR学会, 2022年[18]
  • Japanese Journal of Radiology 優秀論文賞, 日本医学放射線学会, 2022年[19]
  • 優秀論文賞, 日本医学放射線学会, 2020年[20]

主な論文

[編集]
  • Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan. The Lancet Healthy Longevity. 4(9):e478-e486. 2023.[21]
  • Fairness of artificial intelligence in healthcare: review and recommendations. Japanese journal of radiology. 42(1):3-15. 2023.[22]
  • AI-based Virtual Synthesis of Methionine PET from Contrast-enhanced MRI: Development and External Validation Study. Radiology. 308(2):e223016. 2023.[23]
  • Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study. The Lancet Digital Health. 5(8):e525-e533. 2023.[15]
  • ChatGPT’s Diagnostic Performance from Patient History and Imaging Findings on the Diagnosis Please Quizzes. Radiology. 308(1):e231040. 2023.[24]
  • Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis. European respiratory review: an official journal of the European Respiratory Society. 32(168):220259. 2023.[25]
  • Evaluating GPT-4-based ChatGPT’s clinical potential on the NEJM quiz. 2(4). 2023.[26]
  • Deep Learning-Based Time-to-Death Prediction Model for COVID-19 Patients Using Clinical Data and Chest Radiographs. Journal of digital imaging. 36(1):178–188. 2023.[27]
  • Nervus: A Comprehensive Deep Learning Classification, Regression, and Prognostication Tool for both Medical Image and Clinical Data Analysis. arXiv [eess.IV]. DOI: 10.48550/ARXIV.2212.11113. 2022.[28]
  • Artificial intelligence-based model for COVID-19 prognosis incorporating chest radiographs and clinical data; a retrospective model development and validation study. The British journal of radiology. 95(1140):20220058. 2022.[29]
  • Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method. Scientific reports. 12(1):727. 2022.[30]
  • Visual and quantitative evaluation of microcalcifications in mammograms with deep learning-based super-resolution. European journal of radiology. 154:110433. 2022.[31]
  • Artificial intelligence-based detection of atrial fibrillation from chest radiographs. European radiology. 32(9):5890–5897. 2022.[32]
  • Maskless 2-Dimensional Digital Subtraction Angiography Generation Model for Abdominal Vasculature using Deep Learning. Journal of vascular and interventional radiology: JVIR. 33(7):845–851. 2022.[33]
  • Deep learning-based detection of parathyroid adenoma by 99mTc-MIBI scintigraphy in patients with primary hyperparathyroidism. Annals of nuclear medicine. 36(5):468–478. 2022.[34]
  • Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets. PloS one. 17(3):e0265751. 2022.[5]
  • Development and Validation of Artificial Intelligence–based Method for Diagnosis of Mitral Regurgitation from Chest Radiographs. Radiology: Artificial Intelligence. 4(2):e210221. 2022.[35]
  • Artificial intelligence-based detection of aortic stenosis from chest radiographs. European heart journal. Digital health. 3(1):20–28. 2022.[36]
  • Training, Validation, and Test of Deep Learning Models for Classification of Receptor Expressions in Breast Cancers From Mammograms. JCO precision oncology. 5:543–551. 2021.[37]
  • Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs: a retrospective clinical validation study. BMC cancer. 21(1):1120. 2021.[38]
  • Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts. Radiology. 299(3):675–681. 2021.[39]
  • Visualizing “featureless” regions on mammograms classified as invasive ductal carcinomas by a deep learning algorithm: the promise of AI support in radiology. Japanese journal of radiology. 39(4):333–340. 2021.[40]
  • Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms. Radiology. 290(1):187–194. 2019.[8]
  • Technical and clinical overview of deep learning in radiology. Japanese journal of radiology. 37(1):15–33. 2019.[41]

学会活動

[編集]

脚注

[編集]
  1. ^ 研究者詳細 - 植田 大樹”. kyoiku-kenkyudb.omu.ac.jp. 2024年4月16日閲覧。
  2. ^ 大阪公立大学大学院医学研究科 人工知能学 | 医療×AIによる世界クラスの研究を”. med-ai.jp. 2024年4月16日閲覧。
  3. ^ a b c 植田 大樹 (Daiju Ueda) - マイポータル - researchmap”. researchmap.jp. 2024年4月16日閲覧。
  4. ^ INC, SANKEI DIGITAL (2018年4月13日). “大阪市大がAI活用した乳がんの画像診断システム開発(1/2ページ)”. 産経ニュース. 2024年4月16日閲覧。
  5. ^ a b Ueda, Daiju; Yamamoto, Akira; Onoda, Naoyoshi; Takashima, Tsutomu; Noda, Satoru; Kashiwagi, Shinichiro; Morisaki, Tamami; Fukumoto, Shinya et al. (2022-03-24). Baltzer, Pascal A. T.. ed. “Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets” (英語). PLOS ONE 17 (3): e0265751. doi:10.1371/journal.pone.0265751. ISSN 1932-6203. PMC 8947392. PMID 35324962. https://dx.plos.org/10.1371/journal.pone.0265751. 
  6. ^ 92%の自動検出に成功! 深層学習を用いたAIによる脳動脈瘤検出アルゴリズム AI補助下での読影精度の向上を検証”. Osaka City University. 2024年4月16日閲覧。
  7. ^ AIの補助で放射線科医の脳動脈瘤検出精度が1割向上、大阪市立大学が研究”. m3.com AIラボ. 2024年4月16日閲覧。
  8. ^ a b Ueda, Daiju; Yamamoto, Akira; Nishimori, Masataka; Shimono, Taro; Doishita, Satoshi; Shimazaki, Akitoshi; Katayama, Yutaka; Fukumoto, Shinya et al. (2019-01). “Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms” (英語). Radiology 290 (1): 187–194. doi:10.1148/radiol.2018180901. ISSN 0033-8419. http://pubs.rsna.org/doi/10.1148/radiol.2018180901. 
  9. ^ AIが心機能と心臓弁膜症を推定 胸部レントゲンを使用した高精度モデルの開発に成功|大阪公立大学”. 大阪公立大学. 2024年4月16日閲覧。
  10. ^ 日本放送協会. “大阪公立大 AI使いレントゲン画像で心臓病検出システム開発|NHK 関西のニュース”. NHK NEWS WEB. 2024年4月16日閲覧。
  11. ^ レントゲン画像で心疾患を発見 医師とは異なるAIの「目」”. 毎日新聞. 2024年4月16日閲覧。
  12. ^ AIが心臓弁膜症を高精度で発見、普及している胸部X線が使える”. natgeo.nikkeibp.co.jp. 2024年4月16日閲覧。
  13. ^ 医師の知らなかった特徴、AIが発見? X線で心臓病を推定:朝日新聞デジタル”. 朝日新聞デジタル (2023年7月6日). 2024年4月16日閲覧。
  14. ^ 胸部レントゲンから心機能/心臓弁膜症を高精度で推定するAIモデル開発-大阪公立大”. QLifePro. 2024年4月16日閲覧。
  15. ^ a b Ueda, Daiju; Matsumoto, Toshimasa; Ehara, Shoichi; Yamamoto, Akira; Walston, Shannon L; Ito, Asahiro; Shimono, Taro; Shiba, Masatsugu et al. (2023-08). “Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study”. The Lancet Digital Health 5 (8): e525–e533. doi:10.1016/s2589-7500(23)00107-3. ISSN 2589-7500. https://doi.org/10.1016/S2589-7500(23)00107-3. 
  16. ^ 公益社団法人日本医学放射線学会|令和4年度学会賞”. www.radiology.jp. 2024年4月16日閲覧。
  17. ^ 若手研究者奨励賞授賞式・記念講演を開催|大阪公立大学”. 大阪公立大学. 2024年4月16日閲覧。
  18. ^ https://www.jsir.or.jp/kaiin/jimukyoku/”. www.jsir.or.jp. 2024年4月16日閲覧。
  19. ^ 公益社団法人日本医学放射線学会|令和3年度学会賞”. www.radiology.jp. 2024年4月16日閲覧。
  20. ^ 公益社団法人日本医学放射線学会|令和元年度学会賞”. www.radiology.jp. 2024年4月16日閲覧。
  21. ^ Mitsuyama, Yasuhito; Matsumoto, Toshimasa; Tatekawa, Hiroyuki; Walston, Shannon L; Kimura, Tatsuo; Yamamoto, Akira; Watanabe, Toshio; Miki, Yukio et al. (2023-09). “Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan”. The Lancet Healthy Longevity 4 (9): e478–e486. doi:10.1016/s2666-7568(23)00133-2. ISSN 2666-7568. https://doi.org/10.1016/S2666-7568(23)00133-2. 
  22. ^ Ueda, Daiju; Kakinuma, Taichi; Fujita, Shohei; Kamagata, Koji; Fushimi, Yasutaka; Ito, Rintaro; Matsui, Yusuke; Nozaki, Taiki et al. (2024-01). “Fairness of artificial intelligence in healthcare: review and recommendations” (英語). Japanese Journal of Radiology 42 (1): 3–15. doi:10.1007/s11604-023-01474-3. ISSN 1867-1071. PMC 10764412. PMID 37540463. https://link.springer.com/10.1007/s11604-023-01474-3. 
  23. ^ Takita, Hirotaka; Matsumoto, Toshimasa; Tatekawa, Hiroyuki; Katayama, Yutaka; Nakajo, Kosuke; Uda, Takehiro; Mitsuyama, Yasuhito; Walston, Shannon L. et al. (2023-08-01). “AI-based Virtual Synthesis of Methionine PET from Contrast-enhanced MRI: Development and External Validation Study” (英語). Radiology 308 (2). doi:10.1148/radiol.223016. ISSN 0033-8419. http://pubs.rsna.org/doi/10.1148/radiol.223016. 
  24. ^ Ueda, Daiju; Mitsuyama, Yasuhito; Takita, Hirotaka; Horiuchi, Daisuke; Walston, Shannon L.; Tatekawa, Hiroyuki; Miki, Yukio (2023-07-01). “Diagnostic Performance of ChatGPT from Patient History and Imaging Findings on the Diagnosis Please Quizzes” (英語). Radiology 308 (1). doi:10.1148/radiol.231040. ISSN 0033-8419. http://pubs.rsna.org/doi/10.1148/radiol.231040. 
  25. ^ Sugibayashi, Takahiro; Walston, Shannon L.; Matsumoto, Toshimasa; Mitsuyama, Yasuhito; Miki, Yukio; Ueda, Daiju (2023-06-30). “Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis” (英語). European Respiratory Review 32 (168): 220259. doi:10.1183/16000617.0259-2022. ISSN 0905-9180. PMC 10245141. PMID 37286217. http://err.ersjournals.com/lookup/doi/10.1183/16000617.0259-2022. 
  26. ^ Ueda, Daiju; Walston, Shannon L.; Matsumoto, Toshimasa; Deguchi, Ryo; Tatekawa, Hiroyuki; Miki, Yukio (2024-01-11). “Evaluating GPT-4-based ChatGPT's clinical potential on the NEJM quiz”. BMC Digital Health 2 (1): 4. doi:10.1186/s44247-023-00058-5. ISSN 2731-684X. https://doi.org/10.1186/s44247-023-00058-5. 
  27. ^ Matsumoto, Toshimasa; Walston, Shannon Leigh; Walston, Michael; Kabata, Daijiro; Miki, Yukio; Shiba, Masatsugu; Ueda, Daiju (2023-02-01). “Deep Learning–Based Time-to-Death Prediction Model for COVID-19 Patients Using Clinical Data and Chest Radiographs” (英語). Journal of Digital Imaging 36 (1): 178–188. doi:10.1007/s10278-022-00691-y. ISSN 1618-727X. PMC 9360661. PMID 35941407. https://doi.org/10.1007/s10278-022-00691-y. 
  28. ^ Matsumoto, Toshimasa; Walston, Shannon L; Miki, Yukio; Ueda, Daiju (2022). Nervus: A Comprehensive Deep Learning Classification, Regression, and Prognostication Tool for both Medical Image and Clinical Data Analysis. doi:10.48550/ARXIV.2212.11113. https://arxiv.org/abs/2212.11113. 
  29. ^ Walston, Shannon L; Matsumoto, Toshimasa; Miki, Yukio; Ueda, Daiju (2022-12-01). “Artificial intelligence-based model for COVID-19 prognosis incorporating chest radiographs and clinical data; a retrospective model development and validation study” (英語). The British Journal of Radiology 95 (1140). doi:10.1259/bjr.20220058. ISSN 0007-1285. PMC 9733620. PMID 36193755. https://academic.oup.com/bjr/article/7477440. 
  30. ^ Shimazaki, Akitoshi; Ueda, Daiju; Choppin, Antoine; Yamamoto, Akira; Honjo, Takashi; Shimahara, Yuki; Miki, Yukio (2022-01-14). “Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method” (英語). Scientific Reports 12 (1): 727. doi:10.1038/s41598-021-04667-w. ISSN 2045-2322. PMC 8760245. PMID 35031654. https://www.nature.com/articles/s41598-021-04667-w. 
  31. ^ Honjo, Takashi; Ueda, Daiju; Katayama, Yutaka; Shimazaki, Akitoshi; Jogo, Atsushi; Kageyama, Ken; Murai, Kazuki; Tatekawa, Hiroyuki et al. (2022-09). “Visual and quantitative evaluation of microcalcifications in mammograms with deep learning-based super-resolution” (英語). European Journal of Radiology 154: 110433. doi:10.1016/j.ejrad.2022.110433. https://linkinghub.elsevier.com/retrieve/pii/S0720048X22002832. 
  32. ^ Matsumoto, Toshimasa; Ehara, Shoichi; Walston, Shannon L.; Mitsuyama, Yasuhito; Miki, Yukio; Ueda, Daiju (2022-03-31). “Artificial intelligence-based detection of atrial fibrillation from chest radiographs” (英語). European Radiology 32 (9): 5890–5897. doi:10.1007/s00330-022-08752-0. ISSN 1432-1084. https://link.springer.com/10.1007/s00330-022-08752-0. 
  33. ^ Yonezawa, Hiroki; Ueda, Daiju; Yamamoto, Akira; Kageyama, Ken; Walston, Shannon Leigh; Nota, Takehito; Murai, Kazuki; Ogawa, Satoyuki et al. (2022-07). “Maskless 2-Dimensional Digital Subtraction Angiography Generation Model for Abdominal Vasculature using Deep Learning” (英語). Journal of Vascular and Interventional Radiology 33 (7): 845–851.e8. doi:10.1016/j.jvir.2022.03.010. https://linkinghub.elsevier.com/retrieve/pii/S1051044322001233. 
  34. ^ Yoshida, Atsushi; Ueda, Daiju; Higashiyama, Shigeaki; Katayama, Yutaka; Matsumoto, Toshimasa; Yamanaga, Takashi; Miki, Yukio; Kawabe, Joji (2022-05). “Deep learning-based detection of parathyroid adenoma by 99mTc-MIBI scintigraphy in patients with primary hyperparathyroidism” (英語). Annals of Nuclear Medicine 36 (5): 468–478. doi:10.1007/s12149-022-01726-8. ISSN 0914-7187. https://link.springer.com/10.1007/s12149-022-01726-8. 
  35. ^ Ueda, Daiju; Ehara, Shoichi; Yamamoto, Akira; Iwata, Shinichi; Abo, Koji; Walston, Shannon L.; Matsumoto, Toshimasa; Shimazaki, Akitoshi et al. (2022-03-01). “Development and Validation of Artificial Intelligence–based Method for Diagnosis of Mitral Regurgitation from Chest Radiographs” (英語). Radiology: Artificial Intelligence 4 (2). doi:10.1148/ryai.210221. ISSN 2638-6100. PMC 8980888. PMID 35391769. http://pubs.rsna.org/doi/10.1148/ryai.210221. 
  36. ^ Ueda, Daiju; Yamamoto, Akira; Ehara, Shoichi; Iwata, Shinichi; Abo, Koji; Walston, Shannon L; Matsumoto, Toshimasa; Shimazaki, Akitoshi et al. (2021-12-07). “Artificial intelligence-based detection of aortic stenosis from chest radiographs”. European Heart Journal - Digital Health 3 (1): 20–28. doi:10.1093/ehjdh/ztab102. ISSN 2634-3916. PMC 9707887. PMID 36713993. https://doi.org/10.1093/ehjdh/ztab102. 
  37. ^ Ueda, Daiju; Yamamoto, Akira; Takashima, Tsutomu; Onoda, Naoyoshi; Noda, Satoru; Kashiwagi, Shinichiro; Morisaki, Tamami; Honjo, Takashi et al. (2021-11). “Training, Validation, and Test of Deep Learning Models for Classification of Receptor Expressions in Breast Cancers From Mammograms” (英語). JCO Precision Oncology (5): 543–551. doi:10.1200/PO.20.00176. ISSN 2473-4284. https://ascopubs.org/doi/10.1200/PO.20.00176. 
  38. ^ Ueda, Daiju; Yamamoto, Akira; Shimazaki, Akitoshi; Walston, Shannon Leigh; Matsumoto, Toshimasa; Izumi, Nobuhiro; Tsukioka, Takuma; Komatsu, Hiroaki et al. (2021-12). “Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs: a retrospective clinical validation study” (英語). BMC Cancer 21 (1). doi:10.1186/s12885-021-08847-9. ISSN 1471-2407. PMC 8524996. PMID 34663260. https://bmccancer.biomedcentral.com/articles/10.1186/s12885-021-08847-9. 
  39. ^ Ueda, Daiju; Katayama, Yutaka; Yamamoto, Akira; Ichinose, Tsutomu; Arima, Hironori; Watanabe, Yusuke; Walston, Shannon L.; Tatekawa, Hiroyuki et al. (2021-06). “Deep Learning–based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts” (英語). Radiology 299 (3): 675–681. doi:10.1148/radiol.2021203692. ISSN 0033-8419. http://pubs.rsna.org/doi/10.1148/radiol.2021203692. 
  40. ^ Ueda, Daiju; Yamamoto, Akira; Takashima, Tsutomu; Onoda, Naoyoshi; Noda, Satoru; Kashiwagi, Shinichiro; Morisaki, Tamami; Tsutsumi, Shinichi et al. (2021-04-01). “Visualizing “featureless” regions on mammograms classified as invasive ductal carcinomas by a deep learning algorithm: the promise of AI support in radiology” (英語). Japanese Journal of Radiology 39 (4): 333–340. doi:10.1007/s11604-020-01070-9. ISSN 1867-108X. https://doi.org/10.1007/s11604-020-01070-9. 
  41. ^ Ueda, Daiju; Shimazaki, Akitoshi; Miki, Yukio (2019-01). “Technical and clinical overview of deep learning in radiology” (英語). Japanese Journal of Radiology 37 (1): 15–33. doi:10.1007/s11604-018-0795-3. ISSN 1867-1071. http://link.springer.com/10.1007/s11604-018-0795-3. 

外部リンク

[編集]