コンテンツにスキップ

指数閉体

出典: フリー百科事典『ウィキペディア(Wikipedia)』

数学における指数閉体(しすうへいたい、: exponentially closed field; 指数的に閉じた体)F とは、F順序指数体 —すなわち、F順序体で、なおかつ「指数函数」と呼ばれる F加法群から F の正元の成す乗法群の上への準同型 E を持つ体(指数体)であって、E順序写像となるもの— であって、その「指数函数」E群同型かつ適当な自然数 n に対して 1 + 1/n < E(1) < n を満足するものを言う。

[編集]
  • 標準的な指数閉体の例は、実数全体の成す順序体である。ここで「指数函数」E としては、任意の a > 1底に持つ指数函数をとれる。

性質

[編集]
  • 任意の指数閉体 F冪根(拡大)で閉じている (root-closed)。つまり、F の任意の正元は任意の自然数 n に対する n-乗根を F 内に持つ、別な言い方をすれば F の正元全体の成す乗法群は可除である。これは が成り立つことによる。
  • 必ずしもすべての実閉体が指数閉体となるわけではない。例えば、実代数的数体は指数閉でない。実際、実数体の任意の指数閉部分体 F において「指数函数」E は適当な (1 <)aF に対して E(x) = ax の形にとれ、しかし a が代数的数ならばゲルフォント–シュナイダーの定理により E(2) = a2 は代数的でない。
    • その帰結として、指数閉体の成す類は初等的英語版一階の理論で公理化可能)でないことが従う(これは、実数体と実代数的数体が、互いに初等同値英語版な構造であることによる)。
  • 指数閉体の類は擬初等類英語版である。これは体 F が指数閉となるための必要十分条件として「上への函数 E2: FF ×
    +
     
    E2(1) = 2 となるものが存在すること」を挙げることができて、この E2 は一階公理化可能であることによる。

参考文献

[編集]
  • Alling, Norman L. (1962). “On Exponentially Closed Fields”. Proceedings of the American Mathematical Society 13 (5): 706–711. doi:10.2307/2034159. Zbl 0136.32201. http://www.jstor.org/pss/2034159.