コンテンツにスキップ

反復積分に関するコーシーの公式

出典: フリー百科事典『ウィキペディア(Wikipedia)』

フランス数学者コーシーの名にちなむ反復積分に関するコーシーの公式: Cauchy formula for repeated integration)は、n回の不定積分を一度の積分にまとめる公式である。:

実数の場合

[編集]

f を実軸上の連続関数とする。このとき、aを基点とするfn回繰り返し積分

,

は、次の単一の積分にまとめられる。

.

証明は数学的帰納法による。f は連続なので、n=1のときは微分積分学の基本定理より、

;

ここで、

.

今、nのとき主張が正しいと仮定し、n+1のときも主張が成立することを示そう。帰納法の仮定を適用し、積分の順序を入れ替えて、

よって、主張は示された。

応用

[編集]

分数階微積分学において、この公式を用いることで、微分または積分を実数回繰り返すことができるので、微積分作用素英語版の概念を構築することができる。実際、実数回だけ積分をするためには、この公式の(n-1)!をΓ(n)と入れ替えれば良い。(ガンマ関数も参照)。

参考文献

[編集]

外部リンク

[編集]