コンテンツにスキップ

ルジンの分離定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』

記述集合論および数理論理学において、ルジンの分離定理(ルジンのぶんりていり、Lusin's separation theorem)とはポーランド空間において AB が互いに交わらない 解析集合ならその空間におけるボレル集合 CA ⊆ C かつ B ∩ C = ∅ であるものが存在する。[1] この定理は1927年にそれを証明したニコライ・ルージンの名を冠する。[2]

この定理は一般化でき、互いに素な解析集合の列 (An) に対して、互いに素なボレル集合の列 (Bn) を、全ての n について An ⊆ Bn であるように取れることも証明できる。[1]

この定理の直接の帰結にススリンの定理がある。すなわち、自身と補集合が両方解析集合ならそれはボレル集合である。

脚注

[編集]
  1. ^ a b (Kechris 1995, p. 87).
  2. ^ (Lusin 1927).

参考文献

[編集]
  • Kechris, Alexander (1995), Classical descriptive set theory, Graduate Texts in Mathematics, 156, Berlin–Heidelberg–New York: Springer-Verlag, pp. xviii+402, doi:10.1007/978-1-4612-4190-4, ISBN 978-0-387-94374-9, MR1321597, Zbl 0819.04002, https://archive.org/details/classicaldescrip0000kech/page/  (ISBN 3-540-94374-9 for the European edition)
  • Lusin, Nicolas (1927), “Sur les ensembles analytiques” (French), Fundamenta Mathematicae 10: 1–95, JFM 53.0171.05, http://matwbn.icm.edu.pl/ksiazki/fm/fm10/fm1011.pdf .