出典: フリー百科事典『ウィキペディア(Wikipedia)』
ラミの定理(ラミのていり、英語: Lami's theorem)は、静力学における定理[1]。考案者は、フランスの数学者、神学者ベルナール・ラミ(Bernard Lamy、1640年-1715年)である。
1点に作用する3つの力F1 , F2 , F3 が釣り合い状態にあるならば、その大きさと作用線のなす角の間に次式が成り立つ。
ここで、θ1 はF2 とF3 の成す角、θ2 はF3 とF1 の成す角、θ3 はF1 とF2 の成す角である。
F1 の向きにx 軸をとると、それぞれの力は次のように表される。
これらの力が釣り合っているから、その和のy 成分を考えれば
が成り立つ。
F1 /sinθ1 についても、F2 の向きにx 軸を取り直し同様のことを考えればよい。
3つのベクトルF1 , F2 , F3 を、三角形ができるよう配置しなおす。この三角形に対し正弦定理を適用すると、
が成り立つ。sin(π-θ) = sinθであることを考えればラミの定理が成り立つ。
- ^ 青木 弘・木谷 晋、『工業力学(第3版)』森北出版、1994年、18頁
青木 弘・木谷 晋、『工業力学(第3版)』森北出版、1994年、ISBN 4-627-61022-X