テンサー・プロセッシング・ユニット
この記事は英語版の対応するページを翻訳することにより充実させることができます。(2023年12月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
テンサー・プロセッシング・ユニット[1][2](Tensor processing unit、TPU)はGoogleが開発した機械学習に特化した特定用途向け集積回路(ASIC)。グラフィック・プロセッシング・ユニット(GPU)と比較して、ワットあたりのIOPSをより高くするために、意図的に計算精度を犠牲に(8ビットの精度[3])した設計となっており、ラスタライズ/テクスチャマッピングのためのハードウェアを欠いている[4] 。チップはGoogleのテンソルフローフレームワーク専用に設計されているがGoogleはまだ他のタイプの機械学習にCPUとGPUを使用している[5] 。他のAIアクセラレータの設計も他のベンダーからも登場しており、組み込みやロボット市場をターゲットとしている。
Googleは同社独自のTPUは囲碁の人間対機械シリーズのAlphaGo対李世ドル戦で使用されたと述べた[4]。GoogleはTPUをGoogleストリートビューのテキスト処理に使っており、5日以内にストリートビューのデータベースの全てのテキストを見つけることができる。Googleフォトでは個々のTPUは1日に1億枚以上の写真を処理できる。TPUはGoogleが検索結果を提供するために使う「RankBrain」においても使用されている[6] 。TPUは2016年のGoogle I/Oで発表されたが、GoogleはTPUは自社のデータセンター内で1年以上前から使用されていると述べた[5][4]。
Googleの著名ハードウェアエンジニアのNorm Jouppiによると、TPU ASICはヒートシンクが備え付けられており、データセンターのラック内のハードドライブスロットに収まるとされている[5][7]。2017年時点でTPUはGPUTesla K80やCPUXeon E5-2699 v3よりも15~30倍高速で、30~80倍エネルギー効率が高い[8][9]。
アーキテクチャ
[編集]第1世代
[編集]第1世代のTPUは、PCIe 3.0バスを介してホストCPUからのCISC命令で動作する8ビット行列乗算エンジンである。TPUは28 nmプロセスで製造され、正確なダイサイズは不明であるがHaswellの半分未満とされていることから最大で331 mm2である[10]。クロックスピードは700 MHzであり、熱設計電力(消費電力)は28~40Wである。TPUは28 MiBのチップメモリーと65536個の8ビット積和演算器の結果を取る4 MiBの32ビットアキュムレーターを有している。命令はホストとのデータ送受信、行列の乗算または畳み込み、活性化関数の適用を実行する[11]。
第2世代
[編集]第2世代のTPUは2017年5月に発表された[12] 。個々のTPU ASICは45テラFLOPSであり、4チップ(1台)で合計180テラFLOPSモジュールとなる。これらのモジュールは256チップ(64台)組み合わせると11.5 PFLOPSのパフォーマンスを発揮する[13]。とりわけ第1世代のTPUは整数に限定されている一方で第2世代のTPUは浮動小数点演算が可能である[14]ので、機械学習モデルの訓練と推論の両方に役立つ。Googleはテンソルフローアプリでの使用のために「Google Computeエンジン」で第2世代のTPUが利用できるようになると述べた[15]。
第3世代
[編集]第3世代のTPUは2018年5月に発表された。発表内容は、1ユニットあたりの計算性能が100ペタFLOPSであり、冷却が液体冷却であることのみであった。
第4世代
[編集]2021年5月にGoogle I/O 2021で発表された。
第5世代
[編集]2023年に、費用対効果の高いTPU v5eと性能重視のTPU v5pが発表された。
第6世代
[編集]2024年5月にGoogle I/O 2024でTPU v6e[16]が発表された。TPU v5eの4.7倍の性能を誇る[17]。
関連項目
[編集]参考文献
[編集]- ^ “AI半導体「エヌビディア」は何がスゴいのか”. 東洋経済オンライン (2017年12月19日). 2024年8月6日閲覧。
- ^ Cherney, Max A.「アップル、AIモデル訓練にグーグルの技術も利用」『Reuters』2024年6月12日。2024年8月6日閲覧。
- ^ “Google's Big Chip Unveil For Machine Learning: Tensor Processing Unit With 10x Better Efficiency (Updated)” (2016年5月19日). 2016年6月26日閲覧。
- ^ a b c “Google supercharges machine learning tasks with TPU custom chip” (英語). Google (May 18, 2016). 2017年1月22日閲覧。
- ^ a b c “Google's Tensor Processing Unit explained: this is what the future of computing looks like” (英語). TechRadar 2017年1月19日閲覧。
- ^ “Google's Tensor Processing Unit could advance Moore's Law 7 years into the future” (英語). PCWorld 2017年1月19日閲覧。
- ^ 米Googleが深層学習専用プロセッサ「TPU」公表、「性能はGPUの10倍」と主張 日経コンピュータDigital
- ^ Google、AIチップ「TPU」はGPUより30倍速い
- ^ Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor processing unit." 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2017.
- ^ GoogleのAI開発を支えるディープラーニング専用プロセッサ「TPU」 - ISCA論文レビュー版から、その仕組みを読み解く マイナビニュース
- ^ "In-Datacentre Performance Analysis of a Tensor Processing Unit".
{{cite web}}
: Cite webテンプレートでは|access-date=
引数が必須です。 (説明) - ^ “Google brings 45 teraflops tensor flow processors to its compute cloud”. Ars Technica. (17 May 2017) 30 May 2017閲覧。
- ^ Googleの機械学習マシン「TPU」の第2世代登場、1ボード180TFLOPSで64台グリッドでは11.5PFLOPSに到達 GIGAZINE
- ^ Googleが第2世代TPUを発表、処理性能は180TFLOPS EE Times Japan
- ^ “Google Cloud TPU Details Revealed”. Serve The Home. (17 May 2017) 30 May 2017閲覧。
- ^ “Trillium(v6e)の概要 | Cloud TPU”. Google Cloud. 2024年12月9日閲覧。
- ^ 株式会社インプレス (2024年5月15日). “Google、従来比性能4.7倍のTPU。HBMの速度/容量も2倍に”. PC Watch. 2024年12月9日閲覧。