コンテンツにスキップ

核内受容体コアクチベーター2

出典: フリー百科事典『ウィキペディア(Wikipedia)』
NCOA2から転送)
NCOA2
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

1GWQ, 1GWR, 1M2Z, 1MV9, 1MVC, 1MZN, 1P93, 1T63, 1T65, 1UHL, 1YOK, 1ZDT, 1ZDU, 1ZKY, 2AO6, 2B1V, 2B1Z, 2B23, 2FAI, 2G44, 2G5O, 2P15, 2P1T, 2P1U, 2P1V, 2Q7J, 2Q7L, 2ZXZ, 2ZY0, 3A9E, 3DZU, 3DZY, 3E00, 3E7C, 3E94, 3FUG, 3GN8, 3K23, 3KWY, 3KYT, 3L0E, 3L0L, 3O1D, 3O1E, 3OAP, 3OZJ, 3PCU, 3PLZ, 3Q95, 3Q97, 3R5M, 3UP0, 3UP3, 4DOS, 4E2J, 4FHH, 4FHI, 4IA1, 4IA2, 4IA3, 4IA7, 4IQR, 4IU7, 4IUI, 4IV2, 4IV4, 4IVW, 4IVY, 4IW6, 4IW8, 4IWC, 4IWF, 2LDC, 2YJD, 3CLD, 3ERD, 3K22, 4CSJ, 4K4J, 4K6I, 4M8E, 4M8H, 4NIE, 4NQA, 4OC7, 4P6W, 4P6X, 4POH, 4POJ, 4PP3, 4PP5, 4PP6, 4PPP, 4PPS, 4PXM, 4Q0A, 4WG0, 4QE6, 4QE8, 4RFW, 4RMC, 4RMD, 4RME, 4ZN9, 4ZO1, 4RUO, 5APJ, 4UDD, 4PLD, 4PLE, 4UDC, 5APH, 5DMC, 5DKB, 5DMF, 4ZNV, 5DVS, 5DL4, 5E0W, 5E19, 4ZUC, 5DI7, 5I4V, 5E0X, 5E1C, 4ZWK, 5DYD, 5DIG, 5DKG, 5DTV, 5EC9, 5DX3, 5DRM, 5BP6, 5DYB, 5DLR, 5E14, 5DXK, 5DUH, 5DVV, 5DU5, 5DXP, 5DP0, 4ZNS, 5DZ3, 5DXR, 5DXQ, 5DZI, 4ZNT, 4ZNW, 5DID, 5DXM, 5EHJ, 5BQ4, 5DY8, 4ZSH, 5DXB, 5DUG, 5DK9, 5EIT, 5BPR, 5DWJ, 5DWI, 5HYR, 5DKS, 4ZUB, 5EI1, 5DZ0, 4ZNU, 4ZNH, 5E15, 4ZN7, 5DZ1, 5DUE, 4ZWH, 5EGV, 5BNU, 5DIE, 5DKE, 5DWG, 5DZH, 5DRJ, 5DWE

識別子
記号NCOA2, GRIP1, KAT13C, NCoA-2, SRC2, TIF2, bHLHe75, nuclear receptor coactivator 2
外部IDOMIM: 601993 MGI: 1276533 HomoloGene: 4768 GeneCards: NCOA2
遺伝子の位置 (ヒト)
8番染色体 (ヒト)
染色体8番染色体 (ヒト)[1]
8番染色体 (ヒト)
NCOA2遺伝子の位置
NCOA2遺伝子の位置
バンドデータ無し開始点70,109,782 bp[1]
終点70,403,808 bp[1]
遺伝子の位置 (マウス)
1番染色体 (マウス)
染色体1番染色体 (マウス)[2]
1番染色体 (マウス)
NCOA2遺伝子の位置
NCOA2遺伝子の位置
バンドデータ無し開始点13,139,105 bp[2]
終点13,374,083 bp[2]
RNA発現パターン
さらなる参照発現データ
遺伝子オントロジー
分子機能 protein dimerization activity
transcription coactivator activity
転写因子結合
クロマチン結合
RNA polymerase II cis-regulatory region sequence-specific DNA binding
血漿タンパク結合
nuclear receptor coactivator activity
RNA polymerase II intronic transcription regulatory region sequence-specific DNA binding
受容体結合
nuclear receptor binding
aryl hydrocarbon receptor binding
protein domain specific binding
DNA-binding transcription factor activity, RNA polymerase II-specific
細胞の構成要素 細胞質
核質
細胞核
核内構造体
高分子複合体
生物学的プロセス regulation of transcription, DNA-templated
cellular response to Thyroglobulin triiodothyronine
周期的プロセス
negative regulation of transcription by RNA polymerase II
circadian regulation of gene expression
transcription, DNA-templated
cellular response to hormone stimulus
regulation of glucose metabolic process
概日リズム
bile acid and bile salt transport
negative regulation of transcription, DNA-templated
positive regulation of transcription by RNA polymerase II
locomotor rhythm
intracellular receptor signaling pathway
regulation of lipid metabolic process
遺伝子発現調節
response to progesterone
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)
NM_006540
NM_001321703
NM_001321707
NM_001321711
NM_001321712

NM_001321713

NM_001077695
NM_008678
NM_001302702

RefSeq
(タンパク質)
NP_001308632
NP_001308636
NP_001308640
NP_001308641
NP_001308642

NP_006531

NP_001289631
NP_032704

場所
(UCSC)
Chr 8: 70.11 – 70.4 MbChr 8: 13.14 – 13.37 Mb
PubMed検索[3][4]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

核内受容体コアクチベーター2NCoA-2: nuclear receptor coactivator 2)は、ヒトのNCOA2遺伝子によってコードされるタンパク質である。NCoA-2は、GRIP1(glucocorticoid receptor-interacting protein 1)、SRC-2(steroid receptor coactivator-2)、またはTIF2(transcriptional mediators/intermediary factor 2)とも呼ばれる。

機能

[編集]

NCoA-2は、いくつかの核内受容体相互作用ドメインと固有のヒストンアセチルトランスフェラーゼ活性を有する転写共制御タンパク質である。NCOA2は、リガンド活性型核内受容体によってDNAプロモーター部位に動員される。そしてNCOA2はヒストンアセチル化し、下流のDNAの転写を容易にする。したがって、NCOA2はDNA発現の上方調節において核内受容体を支援する[5][6]

相互作用分子

[編集]

核内受容体コアクチベーター2は以下と相互作用する。

脚注

[編集]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000140396 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000005886 - Ensembl, May 2017
  3. ^ Human PubMed Reference:
  4. ^ Mouse PubMed Reference:
  5. ^ Johannes Voegel, M. J. Heine, C. Zechel, Pierre Chambon, Hinrich Gronemeyer (01 Jul 1996). “TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors”. The EMBO Journal 15 (14): 3667–75. doi:10.1002/j.1460-2075.1996.tb00736.x. PMC 452006. PMID 8670870. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC452006/. 
  6. ^ H. Hong, K. Kohli, M. Garabedian, M. Stallcup (01 May 1997). “GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors”. Molecular and Cellular Biology 17 (5): 2735–44. doi:10.1128/MCB.17.5.2735. PMC 232124. PMID 9111344. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232124/. 
  7. ^ Liang-Nian Song, Meghan Coghlan, Edward P. Gelmann (2004). “Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor”. Molecular Endocrinology 18 (1): 70–85. doi:10.1210/me.2003-0189. PMID 14593076. 
  8. ^ Ken Ishitani, Tasuku Yoshida, Hirochika Kitagawa, Hiroaki Ohta, Shiro Nozawa, Shigeaki Kato (2003 Jul 4). “p54nrb acts as a transcriptional coactivator for activation function 1 of the human androgen receptor”. Biochemical and Biophysical Research Communications 306 (3): 660–5. doi:10.1016/S0006-291X(03)01021-0. PMID 12810069. 
  9. ^ Qianben Wang, T S Udayakumar, Tadas S Vasaitis, Angela M Brodie, Joseph D Fondell (2004 Apr 23). “Mechanistic relationship between androgen receptor polyglutamine tract truncation and androgen-dependent transcriptional hyperactivity in prostate cancer cells”. Journal of Biological Chemistry 279 (17): 17319–28. doi:10.1074/jbc.M400970200. PMID 14966121. 
  10. ^ a b c Bin He and Elizabeth M. Wilson (25 December 2020). “Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs”. Molecular and Cellular Biology 23 (6): 2135–50. doi:10.1128/MCB.23.6.2135-2150.2003. PMC 149467. PMID 12612084. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC149467/. 
  11. ^ Suxia Bai, Bin He, Elizabeth M. Wilson (2005 Feb). “Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction”. Molecular and Cellular Biology 25 (4): 1238–57. doi:10.1128/MCB.25.4.1238-1257.2005. PMC 548016. PMID 15684378. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC548016/. 
  12. ^ Timothy V. Beischlag, Song Wang, David W. Rose, Joseph Torchia, Suzanne Reisz-Porszasz, Khurshid Muhammad, Walter E. Nelson, Markus R. Probst, Michael G. Rosenfeld, and Oliver Hankinson (2002 Jun). “Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex”. Molecular and Cellular Biology 22 (12): 4319–33. doi:10.1128/MCB.22.12.4319-4333.2002. PMC 133867. PMID 12024042. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC133867/. 
  13. ^ Maria Rodriguez, Xiaochun Yu, Junjie Chen, Zhou Songyang (2003 Dec 26). “Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains”. Journal of Biological Chemistry 278 (52): 52914–8. doi:10.1074/jbc.C300407200. PMID 14578343. 
  14. ^ John J. Park, Ryan A. Irvine, Grant Buchanan, Stephen S. Koh, Jinha M. Park, Wayne D. Tilley, Michael R. Stallcup, Michael F. Press and Gerhard A. Coetzee (2000 Nov 1). “Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor”. Cancer Research 60 (21): 5946–9. PMID 11085509. 
  15. ^ a b c d Michiko Watanabe, Junn Yanagisawa, Hirochika Kitagawa, Ken-ichi Takeyama, Satoko Ogawa, Yukitomo Arao, Miyuki Suzawa, Yoko Kobayashi, Tetsu Yano, Hiroyuki Yoshikawa, Yoshikazu Masuhiro, Shigeaki Kato (15 March 2001). “A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA”. The EMBO Journal 20 (6): 1341–52. doi:10.1093/emboj/20.6.1341. PMC 145523. PMID 11250900. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC145523/. 
  16. ^ a b Hirochika Kitagawa, Ryoji Fujiki, Kimihiro Yoshimura, Yoshihiro Mezaki, Yoshikatsu Uematsu, Daisuke Matsui, Satoko Ogawa, Kiyoe Unno, Mataichi Okubo, Akifumi Tokita, Takeya Nakagawa, Takashi Ito, Yukio Ishimi, Hiromichi Nagasawa, Toshio Matsumoto, Junn Yanagisawa, Shigeaki Kato (27 June 2003). “The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome”. Cell 113 (7): 905–17. doi:10.1016/S0092-8674(03)00436-7. PMID 12837248. 
  17. ^ Anette Wärnmark, Eckardt Treuter, Jan-Ake Gustafsson, Roderick E Hubbard, Andrzej M Brzozowski, Ashley C W Pike (2002 Jun 14). “Interaction of transcriptional intermediary factor 2 nuclear receptor box peptides with the coactivator binding site of estrogen receptor alpha”. Journal of Biological Chemistry 277 (24): 21862–8. doi:10.1074/jbc.M200764200. PMID 11937504. 
  18. ^ Ingvild S. Fenne, Tuyen Hoang, Marianne Hauglid, Jørn Vegard Sagen, Ernst A. Lien, Gunnar Mellgren (1 Sep 2008). “Recruitment of coactivator glucocorticoid receptor interacting protein 1 to an estrogen receptor transcription complex is regulated by the 3',5'-cyclic adenosine 5'-monophosphate-dependent protein kinase”. Endocrinology 149 (9): 4336–45. doi:10.1210/en.2008-0037. PMID 18499756. 
  19. ^ Johanna Zilliacus, Elin Holter, Hideki Wakui, Hiroshi Tazawa, Eckardt Treuter, Jan-Åke Gustafsson (2001). “Regulation of glucocorticoid receptor activity by 14--3-3-dependent intracellular relocalization of the corepressor RIP140”. Molecular Endocrinology 15 (4): 501–11. doi:10.1210/mend.15.4.0624. PMID 11266503. 
  20. ^ Randy K Bledsoe, Valerie G Montana, Thomas B Stanley, Chris J Delves, Christopher J Apolito, David D McKee, Thomas G Consler, Derek J Parks, Eugene L Stewart, Timothy M Willson, Millard H Lambert, John T Moore, Kenneth H Pearce, H Eric Xu (2002 Jul 12). “Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition”. Cell 110 (1): 93–105. doi:10.1016/S0092-8674(02)00817-6. PMID 12151000. 
  21. ^ Michael Wyszynski, Eunjoon Kim, Anthone W Dunah, Maria Passafaro, Juli G Valtschanoff, Carles Serra-Pagès, Michel Streuli, Richard J Weinberg, Morgan Sheng (2002 Mar 28). “Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting”. Neuron 34 (1): 39–52. doi:10.1016/S0896-6273(02)00640-2. PMID 11931740. 
  22. ^ Yasuo Kodera, Ken-ichi Takeyama, Akiko Murayama, Miyuki Suzawa, Yoshikazu Masuhiro, Shigeaki Kato (2000 Oct 27). “Ligand type-specific Interactions of Peroxisome Proliferator-activated Receptor γ with Transcriptional Coactivators”. Journal of Biological Chemistry 275 (43): 33201–4. doi:10.1074/jbc.C000517200. PMID 10944516. 
  23. ^ a b Chi Zhang, Troy A. Baudino, Diane R. Dowd, Hisashi Tokumaru, Wen Wang, Paul N. MacDonald (2 Nov 2001). “Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated transcription”. Journal of Biological Chemistry 276 (44): 40614–20. doi:10.1074/jbc.M106263200. PMID 11514567. 
  24. ^ Wen-yi Lee, Noa Noy (2002 Feb 26). “Interactions of RXR with coactivators are differentially mediated by helix 11 of the receptor's ligand binding domain”. Biochemistry 41 (8): 2500–8. doi:10.1021/bi011764+. PMID 11851396. 
  25. ^ Michaela Herdick, Andreas Steinmeyer, Carsten Carlberg (2 June 2000). “Antagonistic action of a 25-carboxylic ester analogue of 1alpha, 25-dihydroxyvitamin D3 is mediated by a lack of ligand-induced vitamin D receptor interaction with coactivators”. Journal of Biological Chemistry 275 (22): 16506–12. doi:10.1074/jbc.M910000199. PMID 10748178. 

 

参考

[編集]
  • NURSA C90
  • Overview of all the structural information available in the PDB for UniProt: Q15596 (Human Nuclear receptor coactivator 2) at the PDBe-KB.
  • Overview of all the structural information available in the PDB for UniProt: Q61026 (Mouse Nuclear receptor coactivator 2) at the PDBe-KB.

外部リンク

[編集]